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Abstract—High performance computing is facing a data deluge
from state-of-the-art colliders and observatories. Large data-sets
from these facilities, and other end-user sites, are often inputs
to intensive analyses on modern supercomputers. Timely staging
in of input data at the supercomputer’s local storage can not
only optimize space usage, but also protect against delays due
to storage system failures. To this end, we propose a just-in-
time staging framework that uses a combination of batch-queue
predictions, user-specified intermediate nodes, and decentralized
data delivery to coincide input data staging with job startup. Our
preliminary prototype has been integrated with widely used tools
such as the PBS job submission system, BitTorrent data delivery,
and Network Weather Service network monitoring facility.

I. INTRODUCTION

The advent of Petaflop computers, observatories and large-
scale colliders are pushing the envelope on data-set sizes.
For instance, the Large Hadron Collider (LHC) at CERN
will generate petabytes of data, which scientists will analyze
to glean insights into the origin of the universe. Similarly,
the Spallation Neutron Source (SNS) at Oak Ridge National
Laboratory (ORNL) will generate hundreds of terabytes of
data that will be analyzed by users from a variety of domains
ranging from medicine to engineering. These large input data-
sets are processed by a geographically dispersed user base,
often times, on large-scale supercomputers referred to as
leadership class facilities. Therefore, result output data from
supercomputer simulations are not the only source that is
driving data-set sizes. Input data sizes are also growing many
fold.

A typical job work-flow comprises of staging the input
data from the end-user location onto the supercomputer’s
parallel file system called scratch space, and submitting the
job to the scheduler at the center. From then on, the job
waits in the queue for its turn, while the input data waits
on the scratch space. HPC centers are heavily crowded and
it is not uncommon for a job to spend hours—or even days
on end—in the queue. Consequently, the turnaround time
of jobs in popular HPC centers is much higher than their
actual runtime. This problem is so acute in some centers that
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funding agencies (DOD, NSF, DOE) are already requesting
performance specification metrics such as expansion factor
in addition to the traditional job turnaround time metric.
The expansion factor is defined as the ratio (wall time +
wait time)/wall time averaged over all jobs (the closer to 1,
the better).

The time a job takes to complete, i.e., (wall time +
wait time), is also the time the input data spends in the scratch
parallel file system. The scratch parallel file system is an
expensive commodity, and provisioning and maintaining it is
usually a notable fraction of the HPC center’s operations bud-
get. The scratch space is meant for storing data for currently
running or soon to run jobs. From a center standpoint, sub-
optimal use of the scratch resource could impact the center’s
serviceability, i.e., the ability to serve more incoming jobs.
From a user standpoint, the input data is exposed to potential
unavailability due to storage system failure while it is waiting
for the job to be scheduled. Storage system failure has been
slated as one of the primary reasons for system downtime in
many leadership class machines [7], [13], [16]. Consequently,
when the job is ready to run, crucial pieces of input data may
be unavailable, requiring a rescheduling. This can result in
undesirable delays.

To address these issues, we propose a framework for just-in-
time staging of input data-sets associated with supercomputing
jobs. Our framework attempts to have the data available at the
scratch parallel file system, from the end-user location, just
before the job is about to run, thereby mitigating many of
the aforementioned issues. The basic idea behind just-in-time
staging is as follows. Using our framework, a user first obtains
an advisory opinion from a batch queue prediction service [1]
at the center, which gives an estimate, with some confidence,
of when the job will run. Based on this advice, the user then
submits his job script to a staging manager that initiates the
data staging in a globally (center-wide) optimal fashion. In the
meantime, the compute job is submitted to the batch scheduler
and is setup to commence only after the input data is staged.
The staging manager uses a number of intermediate storage
locations in the data path between the end-user and the HPC
center to setup a peer-to-peer overlay. It uses a combination
of high-efficiency data dissemination (using BitTorrent [3])
and network monitoring (using Network Weather Service
(NWS) [15]) to exploit orthogonal, residual bandwidth and



to dynamically adapt to network volatility, respectively. Such
dynamic adaptation allows the manager to perform just-in-time
data staging to meet the job’s commencement schedule.

Thus, our approach is able to use HPC center resources in a
judicious fashion by not staging the data too early, and is also
able to protect user data from potentially undesirable failure
scenarios.

II. PROBLEM SPACE

In this section, we discuss the issues involved in designing
a just-in-time staging solution for an HPC center. In order
to stage the data to be coincident with job startup, we need
intelligent estimates of the following. First, we need to know
when the user’s job will commence. Predicting job start times
is a well explored area of research. Several studies [12], [4]
exist that use a combination of job requirements such as
number of processors, run time, and previous and current
behavior of the batch scheduler to predict, with reasonable
accuracy, the time at which a job would be started. In our work,
we will not delve into the intricacies of designing a prediction
service and use an existing service, NWS [15], developed at
the University of California at Santa Barbara. Instead, we
focus our efforts on using such a service to design a data
staging scheme. The batch queue prediction service from NWS
provides two kinds of information: (i) given job characteristics,
it predicts a statistical upper bound on how long the job will
wait prior to execution; (ii) given job characteristics and a
start deadline, it can give a probability of the job starting by
the deadline [1]. Both of these predictions are relevant to our
purposes.

Second, we need an estimate of how long the data staging
would take from the end-user site to the HPC center. Much like
estimating job start times, predicting wide-area data transfer
is a whole body of research in itself. Our own previous work
dealt with predicting large GridFTP transfer times in a data
grid environment using regression techniques that combine
previous history of transfers with current network bandwidth
measurements [14]. In our target setting, however, we propose
to use intermediate storage locations in the data path between
the center and the user by arranging them in a tree structure
and using BitTorrent for data dissemination. Such an approach
entails continuous bandwidth measurements for the network
links connecting the center, the intermediate nodes, and the
end-user. Further, the changing network bandwidth values need
to be factored in to revise the route dynamically in an attempt
to stage the input data before the job startup deadline.

III. DESIGN

The just-in-time staging of job input data ensures timely
delivery of the data at the HPC center and is achieved using a
combination of strategies both at the center as well as the end-
user site. In our design, the HPC center provides a batch queue
prediction service (e.g., NWS batch queue prediction [1]),
which the users can query before submitting their jobs to get an
estimate of queue wait times. This is a reasonable requirement,
as such a service is common in modern HPC sites. For

example, each of the nine TeraGrid [6] supercomputer centers
run a service to furnish job wait time estimates, which the
users can use to reduce turnaround times for their jobs.

As noted earlier, the prediction service can usually provide
both wait time estimates as well as a probability for a job
starting by a given user deadline. In cases where direct wait
time predictions are unavailable, the user needs to pose a query
with a deadline for when the job should start by. For example,
the query for the NWS batch prediction takes the following
values: cluster, queue, number of nodes, runtime and deadline.
For our purposes, the percent probability result can then be
used to determine the potential job wait time for that queue.
A 90% or higher probability can be treated as an affirmation
of the user’s deadline and can be used as the time when the job
will be started. The job can potentially start earlier than this
predicted deadline due to inaccuracies in the prediction or due
to failure of other running jobs. While a lower probability may
mean that the job may not commence by the user-specified
deadline, it is only an estimate. To accommodate this, we can
let the user tweak the estimate by some factor, f . Here, the
user adjusts the estimated deadline, obtained from the batch
queue prediction service, by a percentage to denote a tighter
job start deadline. A user might do this for one of two reasons.
First, the user may wish to use the prediction with “guarded
optimism” to account for earlier job starts. Second, he might
wish to finish staging the data as early as possible by using
an artificial tighter deadline, thereby shifting the burden of
protecting the data during the prolonged wait time to the
center. Therefore, allowing f to be large can unduly affect
other jobs, which have genuine tight deadlines. Limiting the
adjustment to only a factor is necessary to ensure that there
is global fairness in staging towards all jobs. Consequently,
the prediction service will also report its estimate to a staging
manager at the center so that the manager can ensure that the
staging deadline submitted by the user is within the factor.

The user then submits a job script to the staging manager
at the center with a description of the job and other details
necessary for just-in-time staging. These include attributes
such as the job startup deadline, TJobStartup (mentioned
above), a set of intermediate nodes, < Ni, Pi >, where Pi

denotes the usage properties of the intermediate nodes Ni,
for the decentralized staging process, and the size of the input
data-set, S. The staging manager also takes as input the current
snapshot, BWi, of the observed NWS bandwidth between the
HPC center and Ni as well as between the Ni’s themselves.
Based on these parameters, the manager decides upon either a
direct or a decentralized transfer of the job’s input data. The
decision, which we call an input data staging schedule, Is,
delivers the data in time, TStage, which satisfies the property,
TStage ≤ TJobStartup.

Even after a particular course of action, e.g., decentral-
ized transfer, is chosen, a decision-making component con-
stantly re-evaluates the data staging based on an updated
< Ni, Pi, BW ′

i >, where BW ′

i is the latest snapshot of
NWS bandwidth measurements. If the re-evaluated time to
staging, T ′

Stage, satisfies the property, T ′

Stage > TJobStartup,



then, alternate routes are taken to stage the data before job
execution. However, this is only feasible if such routes are
available at the time of re-evaluation. To accommodate this,
we periodically re-evaluate the decentralized transfer during
the entire course of the stage-in to see if newer optimal routes
have become available. This would enable us to meet the stage-
in deadline and to ensure that the job scheduler is not starved
with no job to schedule due to an unfinished stage-in.

The user submits the job script simultaneously to the staging
manager and the batch queue, so that, while data staging starts,
the job gets in line in the queue and the compute part can start
by the user deadline. The staging manager then submits the
decentralized data staging job to a data job queue and sets
up a dependency such that the compute job does not begin
until the staging-in task has finished. To this end, we use and
extend our earlier works [16], [9] on instrumenting the job
submission system, the stagesub tool that is being used in
the No.5 supercomputer in Top500, ORNL Jaguar. Having
a center-wide staging manager has the advantage that the
manager can perform global optimization (e.g., higher priority
to a stage-in that is on a tight deadline).

A final piece in the just-in-time data staging architecture
is the utilization of a number of user-specified intermediate
nodes (discussed below), using which data can be staged into
the center.

A. Intermediate Nodes

Our system uses a number of intermediate nodes (Nis) that
can provide temporary storage for data on the path from the
client site to the HPC center. While submitting a job the client
also provides to the center a set of nodes that can be used
as intermediate nodes. These nodes can be the client’s own
collaborating sites, from where other input data can also be
staged. This has an added advantage of letting the HPC center
asynchronously retrieve data from other sources, decoupled
from the client site. The intermediate nodes provide multiple
data flow paths from the submission site to the center, which
lead to better bandwidth utilization, faster staging speeds, as
well as fault-tolerance in the face of failures.

To account for a case where a client does not have enough
intermediate nodes for efficient stage-in, we can rely on the
idea of Landmark nodes [9], a number of geographically
distributed nodes that are always available and can serve
as intermediate nodes. The Landmark nodes can be other
HPC centers, or nodes along national links such as, Internet2,
Lambda Rail or the TeraGrid to which many end-users may
be connected.

B. Supporting Just-in-Time Staging

Once the submission site receives an estimate from the batch
queue prediction service, the data staging process is initiated.
First, the center chooses a number of nodes from the set of
Ni’s ordered by available bandwidth. The exact number of
nodes used for this purpose, i.e., the fan-out, is chosen to
stage-in all the necessary data before the predicted job start
time. These chosen Ni’s serve as the Level-1 intermediate
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Fig. 1. The data flow path from the submission site to the HPC
center. Each intermediate node (hexagon) run NWS (gray square)
for bandwidth monitoring.

nodes. Note that the selected fan-out is not static, and can vary
depending on the actual transfer speeds. Second, the input data
is split into chunks and parallel transfer of the chunks to Level-
1 nodes is initiated. The transfer may also involve further
levels of intermediate nodes (up to Level-N ). Alternatively,
depending on the availability of intermediate nodes, the client
can also stage the data to Level-N nodes much earlier than
the deadline.

As the job startup deadline approaches, the close proximity
of the Level-N nodes to the center allows them to quickly
move the input data to the center’s scratch space. Also, this
design allows the Level-N nodes to stage-in the data at peak
(pre-specified) bandwidth at the most appropriate time without
worrying about the availability (and connection speed) of the
submission site. This process is illustrated in Figure 1.

The use of intermediate nodes in our system provides
multiple data-flow paths from the submission site to the center,
leading to several alternative options for data delivery. For
instance, data may be replicated across different Ni’s during
the transfer from one level to the other. This will allow the
center to pull data from a number of locations, thus providing
fault tolerance against node failure, as well as better utilization
of the available in-bandwidth at the center. The schedule
can also be used to simultaneously deliver data to multiple
interested sites in the network.

Since, our design allows the submission site to push the data
onto intermediate nodes, we employ implicit replication of the
data by sending it to more than a single intermediate node. In
addition to this, we can also apply erasure code [8], [11] to
improve the reliability of the transfer, while minimizing the
amount of transferred data.

Another aspect of the staging-in process is to ensure that
the necessary data is copied to the center scratch space in
time, and potential delays in the job startup are avoided. Given
the dynamically changing bandwidths between participants,
a fixed or statically chosen fan-out/data path is insufficient.



#PBS -N myjob
#PBS -l nodes=128, walltime=12:00
mpirun -np 128 ˜/MyComputation
#Stagein file://SubmissionSite:/home/user/input1
file:///home/scratch/user/input1
#InterNode node1.Site1:49665:50GB
...
#InterNode nodeN.SiteN:49665:30GB
#Deadline 1/14/2007:12:00

Fig. 2. An example instrumented PBS script.

Therefore, we employ NWS [15] to monitor and estimate the
available bandwidth between participating nodes. The center
uses this information to decide whether a chosen fan-out
is sufficient to meet a particular deadline, or needs to be
increased. Finally, this decision is re-evaluated at each level
to ensure proper staging.

IV. IMPLEMENTATION

We have implemented our just-in-time staging manager
using about 2500 lines of C code, and used FreePastry [5]
as the p2p overlay.

A. Integration with Job Submission

We instrumented the widely-used PBS [2] job submis-
sion system to let the users specify intermediate nodes and
deadlines. An example instrumented PBS script is shown in
Figure 2, where the user specifies intermediate nodes and
deadlines as well as details such as available storage capacities.

The annotated script is submitted to our parser on the HPC
center. The parser filters out the staging-specific directives and
passes them to the staging manager. The remaining script is
forwarded to the standard PBS queue.

B. Integration with BitTorrent and NWS

We use NWS [15] to track statistics, e.g., available band-
width, for each intermediate node. These measurements are
used for adjusting fan-out to enable staging of data in time.

We exploit BitTorrent’s [3] scatter-gather protocol for trans-
ferring data by extending the protocol to use NWS bandwidth
measurements. This allows efficient use of the orthogonal
bandwidth, and provides opportunities to improve overall
transfer times. The Staging Manager creates a “torrent” file
for the subset of data to be transmitted to a set of chosen
intermediate nodes. Upon receiving the torrent file, the nodes
use the metadata information in the file along with a BitTorrent
tracker to “download” the data subset to their local storage.
The process is repeated at all the intermediate node levels.
When the job is about to run at the center, the Manager can
use appropriate torrent files to pull the input data from the
intermediate nodes to the center, thus completing the stage-in
process.

V. EVALUATION

In this section, we present an evaluation of our just-in-time
data staging approach using the implementation of Section IV.

TABLE I
TRANSFER TIMES (IN SECONDS) USING A DIRECT TRANSFER (scp) AND

OUR DECENTRALIZED STAGING.

File Size 100 MB 240 MB 500 MB 2.1 GB
Direct 172 351 794 3082

Client offload 139 258 559 2164
Pull 43 106 193 822

TABLE II
THE TIME TO TRANSFER A 2.1 GB FILE USING STANDARD BITTORRENT.
THE EQUIVALENT PHASES FOR OUR SCHEME ARE SHOWN IN BRACKETS.

Phase Time(s)
Send to intermediate nodes (Client offload) 2653

HPC Center download (Pull) 960

A. Experimental Setup

We use the PlanetLab [10] testbed for our experiments. To
this end, we chose six geographically distributed sites, and
arranged them in a tree structure with the submission site as
the root, and with only one level of four intermediate nodes.
In the following, the reported numbers represent averages over
a set of three runs.

For this initial investigation, we focus on the ability of the
presented design to achieve its goal of decentralized stage-in,
and its ability to reduce data transfer times as a proof-of-
concept. The use of PlanetLab limit our evaluation in terms
of the size of the data and volatility of used resources. In true
HPC systems, the data sizes will be much larger and resources
more stable. Evaluating our just-in-time staging on such a scale
remains the goal of our current and future research.

B. Decentralized Stage-in vs. Direct Transfer

In this experiment, we determine the feasibility of our
approach compared to a simple point-to-point direct transfer
using scp. For this purpose, we used a range of file sizes from
100 MB to 2.1 GB. We measured the time of a direct transfer
between the submission site and the center, as well as the trans-
fer times for the proposed just-in-time staging. Table I shows
the results of the time it takes for the data to be transferred
from the client to HPC center directly (Direct), from client to
Level-1 nodes (Client offload), and from Level-1 to the Center
(Pull). Compared to a direct transfer, the decentralized stage-in
can reduce the last-hop transfer times by 69.8% to 75.7% for
240 MB and 500 MB data sizes, respectively. This can lead
to improved HPC center serviceability by reducing the time
the scratch space has to hold data for a job that will run in
distant future.

C. Effect of Using NWS Measurements

Next, we compare our NWS-based transfer approach with
a regular BitTorrent-based data transfer. In this case, we use
NWS bandwidth measurements to greedily provision Level-1
nodes to increase the fan-out to utilize the maximum client
outbound bandwidth. Table II shows the time taken to deliver
a 2.1 GB data-set using the regular, unmodified BitTorrent
protocol. Compare these to the transfer times using our just-in-
time staging shown earlier in Table I. The results indicate that



both Client offload and Pull in our approach out-perform the
corresponding steps in regular BitTorrent transfer. The Client
offload to Level-1 nodes is 18.4% faster. The time to pull
the file to the Center scratch space is improved significantly
by 14.4%. These results show that bandwidth measurement
provides a good tool for improving stage-in times.

D. When to Use Decentralized Stage-in?

In the above experiments, the bandwidth available between
the client and Level-1 nodes is greater than that between
the client and the center. Thus, the center always decided
to perform decentralized stage-in. In the next experiment,
we modified the setup to use a faster node as the end user
site, and repeated the experiment for staging a 2.1 GB file.
First, we do the transfer without considering direct transfer
and always using decentralized stage-in. Second, we repeat
the experiment with the ability to choose between direct and
decentralized stage-in depending on the ability to meet a
transfer deadline. We observed that for the first case, the time
to stage and transfer the data to the center was 2867 seconds.
In contrast, for the second case the direct transfer completed
in 968 seconds, an improvement of 66.2%. This stresses the
need for the stage-in mechanisms to dynamically adjust to the
variations in the system behavior, and to not be hard-wired to
simply always do a staged transfer or a direct transfer.

VI. CONCLUSION

In this paper, we have presented the design and a proof-of-
concept implementation of a just-in-time staging framework
to coincide input data delivery at the supercomputing center
scratch space with job startup time. Our framework leverages
the job wait time estimates from a batch queue prediction
service and user-specified intermediate nodes to deliver input
data in time. We use our approach in conjunction with the
BitTorrent protocol, instrumented to use dynamic network
monitoring information, to adapt to transient network condi-
tions and to tap available residual network bandwidth between
participants. Moreover, our prototype has been integrated
with the PBS scheduler and our own data queue/dependency

management tool, stagesub, that is being used in the
Jaguar supercomputer at ORNL. Our evaluation indicates that
our framework can stage the input data only when needed
and can thus optimize center scratch usage, improve center
serviceability, and protect input data from undesirable failure
scenarios.
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